
ON TRE FORM OF OEM'S LAW IN 
MAGNETORYDRODYNAMICS 

(0 FOBME ZAKONA OHA V MAGNITNOI 
GIDRODINAMIKE) 

PYY Vo1.25, No.4, 1961, pp. 611-622 

G. A. LIUBIMOV 
(Moscow) 

(Received April 7, 1961) 

To describe the motion of an electrically conducting fluid or gas in an 
electromagnetic field one uses the system of mechanical equations and the 
system of Maxwell’s equations, which in the case of interaction of the 
field with the medium must be considered simultaneously. This combined 
system of equations is complete (that is, it suffices to determine all 
quantities characterizing the motion of the medium and the variation of 
the electromagnetic field) if expressions are given for the internal 
energy of the medium, the stress tensor, and the heat-flux vector (the 
expressions for these quantities are usually taken from ordinary hydro- 
dynamics; refinements for an ionized gas moving in a magnetic field can 
be found in [ 1 I ). and if the connection is also given between the 
current density j and the other quantities characterizing the problem. 
As a simple relation for the current density in electrodynamics and 
magnetohydrodynamics one uses Ohm’s law (see, for example, [ 3 1 and [ 3 1 ) 

j' = GE' 
(0-U 

Here j is the current density, E the intensity of the electric field, 
and u is a coefficient called the conductivity of the medium; primes 
mean that the corresponding quantities are taken in a system of coordi- 
nates in which the medium is at rest. If one uses the formulas for trans- 
forming the field and current from one system of coordinates to another, 
the relation (0.1) can be written in a system of coordinates in which 
the motion of the medium is considered as 

j = (J 
( 
E + f x M) + p,v (U.2) 

Here p, is the electric charge density, v the velocity of the medium, 
and c a constant equal to the speed of light. Here, and throughout what 
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follows, we use an absolute Gaussian system of units. Relations (0.1) 
and (0.2) describe well the flow of current in solid conductors and also 
in liquid and gaseous conductors for sufficient density of the media and 
moderate magnetic fields, but describe poorly the process of current 
flow in a number of other cases that are of considerable present interest. 
In this connection a number of authors have considered the question of 
the form of a so-called generalized Ohm’s law suitable for a description 
of the phenomena of current flow in a fully ionized gas [ 4,~ 1 or a 
partially ionized gas [ 6 I under conditions in which the relations (0.1) 
and (0.2) are unsuitable. 

To obtain a generalized Ohm’s law it is convenient to use a model 
multi-component quasi-neutral medium consisting of electrons, ions, and 
neutral atoms [ 4.6 1. In the present paper there is obtained on the basis 
of this model a relation connecting the current density with the other 
parameters (generalized Ohm’s law) in the presence of a certain space 
charge p,. Furthermore, hypotheses and conjectures are formulated and 
discussed that specify the form of the generalized Ohm’s law, and con- 
sequently also the limits of applicability of the relations obtained. 
(In particular, the range of the hypotheses is indicated in which rela- 
tions (0.1) and (0.2) are satisfied.) Dimensionless parameters are given, 
related to the mechanical and physical characteristics of the problem. 
that determine the form of Ohm’s law. Various forms of Ohm’s law are dis- 
cussed from the point of view of their application to one or another con- 
crete problem. 

1. General equations describing the motion of a tbree- 
component medium consisting of electrons, ions and neutral 
atoms. In order to obtain a relation connecting the current density 
with the quantities characterizing the motion of the medium and the 
electromagnetic field intensity, and which is independent of Maxwell’s 
equations and the equations of mechanics, we consider a simplified 
kinetic molecular model of the medium. 

Let a unit volume of the medium contain no neutral atoms, n ions, and 
n + n’ electrons. For simplicity we assume that the electrons and ions 
carry equal but opposite charge e; then the space charge density is equal 
to 

pe = - n’e 

Furthermore, we assume that the mass mi of an ion is much larger than 
the mass mc of en electron, and equal to the mass ma of a neutral atom. 

The degree of ionization is the quantity 

a= nl(n + n,) (l-1) 
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As a simplified model we suppose that each component - electrons, 
ions, and neutral atoms - represents a gas moving independently of the 
other components, in the sense that the hydrodynamic equations of motion 
may be written separately for each component. Interaction between the 
components arises as a result of collisions of particles, and leads to a 
certain mean force equal to the average change of momentum due to colli- 
sions of particles belonging to the different components. 

The electron, ion and neutral gases are regarded as ideal, so that 
the stress within the components amounts to appropriate pressures. (See 
17 1 for the effect upon Ohm's law of terms related to the viscosity of 
the components.) 

If the velocities of relative motion of the components are small com- 
pared with the random speed of the particles, then the mixture as a whole 
may also be considered an ideal fluid, and the total pressure is equal 
to the sum of the partial pressures of each component (see [l 1, for ex- 
ample) 

P = P, + Pi + Pa (1.2) 

Since under equilibrium conditions the pressure is proportional to 
the number of particles, the following formulas are valid: 

IL 

PL = 2n + n, + n’ p* 

n + n’ 

pe = 2nf n, + n’ PI p, = na I P 
2n + n, + n 

(1.3) 

In the space occupied by the moving medium the electric field E and 
magnetic field H are given. Here it is assumed that E and H are deter- 
mined as external fields, as are also the charges and currents in the 
medium itself. 

We determine the force acting upon each component that arises from 
collision of particles of the given component with particles of another 
component. The force acting on the uth component due to the kth component 
can be represented in the following form: 

fvk= AJ,kn,& 7 v, k = e, i, a 

Here n.,, is the number of particles of the vth kind per unit volume, 
r,,k the average time between collisions of particles of the vth kind 
with particles of the kth kind, where the average time between collisions 
is taken as the interval of time until a particle of the vth kind loses 
on the average an impulse AJVk by interaction with a particle of the 
kth kind. 

Usually one takes as A&,k the quantity 
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AJ,k = - mkmv 
mk fmv 

Vvk 

Here vvk is the average velocity of particles of the vth component 
relative to particles of the kth component, which corresponds to the 
average loss of momentum for elastic collision of two particles of masses 
mv and mk moving with relative velocity vvk, under the assumption that 
all angles of deflection of the particle as a result of the collision are 
equally probable. 

Since mi >> me, for the electron gas 

A&k = - Jrk (k = i, a) 

and for the ion and neutral gases 

AJvk = -+J,jk (k, v = i, n; k # y) 

Here J,,k is the impulse of particles of the vth gas relative to 
particles of the kth. 

It is now easy to write the equations of motion for each component of 
the medium. Let the velocity of motion of the entire medium be Y, the 
velocity of motion of the ion gas relative to the medium be Vi, and the 
velocity of motion of the electron gas relative to the ion gas be ye. 

'Ibe velocity of motion of the neutral gas is determined from the velocity 
of the medium and the velocity of the ion gas by the formula 

(J-5) 

In the derivation of this relation it is assumed that the velocity of 
an element of the medium coincides with the velocity of its mass center, 
and the inequality me << mi is also used. 'Ihe last term is retained in 
spite of the small mass of the electron because of the fact that the re- 
lation between ve 

I miVi I * 
and vi is unknown, and it may happen that 1 meveI = 

Furthermore, it is assumed here and henceforth that n' << n, because 
significant concentrations of space charge cannot arise in the absence 
of special outer conditions providing for the retention of this charge. 
In this connection terms of order n'/n are neglected everywhere in com- 
parison with terms of order unity. 

We note that the condition n’ << n is not equivalent to the assump- 
tion of the absence of space charge, because a small excess in the number 
of electrons over the number of ions can give a marked increase in the 
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force due to the electric field ( - n’eE = p,E), and in the current 
density due to the transfer of charges together with the motion of the 
medium ( - n'ev = p,v). I f  the gas is fully ionized (na = va = 0), rela- 
tion (1.5) simplifies and gives a connection between vi and v  . Calcula- 

tions analogous to those carried out here under the assumptioi that a f  1 
(naf 0) can be carried out also for the case of a fully ionized (two- 
component) medium [ 7 I, where, as is easily verified, the generalized 
Ohm's law can be obtained from the relation (2.12) of the present paper 
in the limit a + 1 (relation (2.13)). 

In addition to the forces due to collisions of particles of the differ- 
ent components, a force due to the electromagnetic field will act on the 
electron and ion gases. 

Ihe average momentum of electrons relative to ions is 

J,i = m,v, 

lhe average momentum of electrons relative to the neutral molecules 
is 

J,, = m, (V + Vi -k VP - Va) 

Consequently the equation of motion for the electron 
written in the form 

vi 

4 -2. 

gas may be 

d, (v -j- vi + VP) 
m,n dt 

= - grad p, -ne [ E + 

I- ,: (V + \'i + ve) x H - m,nv,z-’ - men 
I ( 

v, + 2 

d 
2-g 
dl t [(v + vi 4- ve)Vl = g + (vi+ Ve)V 

z,-1 ) ( 1.6) 

'Ihe momentum of the ions relative to the neutral atoms is equal to 

Using this expression, we write the equation of motion of the ion gas 
in the form 

111 ill 
‘/i Cv + vj) 

dt 
= - grad pi + ne 

[ 
E + f (v. + vi) x H ] + nm,v,r-l - 

I CL "at? d. 
- y nmi rcc VeTi 

-1 _- 1 vi 
2 nmi l--a ‘si 

-1 
nai i 2 = A +.(V +Vi)O) (1.7) 

dl 

In @ations (1.6) and (1.7) T ,  T  i, and T  e are respectively the times 
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between collisions of electrons and ions, ions and neutral atoms, and 
electrons and neutral atoms. 

In place of the equation of motion of the neutral gas we will use the 
equation of motion for the medium as a whole, which is, of course, a con- 
sequence of the equation of motion of the neutral gas and of Equations 

(1.6) and (1.7): 

mi (n + n,) ‘2 = - grad p - n’eE - $ [rive + n’ (V + Vi)] x H (1.8) 

Here were used for the determination of the current density 

j = 2 nkekvk = - (n + n’) e (V + Vi + VJ + 
k 

+ ne (V + Vi) = - nev, - n’e (V + Vi) 

and the inequality n’ << n. 

2. Resulting generalized Ohm’s law. In Equations (1.6), (1.7) 
and (1.8) we estimate the terms containing derivatives. 

We will assume that the characteristic time of the problem is much 
larger than the time between collisions, and that the velocity of the 
components relative to the center of mass is small compared with the 

random speed of the particles belonging to a given component. (‘Ihis con- 
dition was used in obtaining relations (1.2) and (1.3).) I f  T is a 
characteristic time of the problem, L a characteristic dimension, and II 
a characteristic speed (II = L/T), th en these assumptions are equivalent 

to the following: 

T > max {T, G, zi} 

Vi<Vixt ) Vi + Ve I< Vex, Iv-vy,/<;,x (2-l) 

Here u. v  
T 

, and vux are the chaotic speeds of the ions, electrons 
and neutra paZic1e.s; hence, if there is a state of equilibrium, the 
temperature of the electrons, ions and neutral particles is equal, and 

m V ’ - MiVixB = m,vax2 e ex - 

I f  the conditions (2.1) do not hold, it is possible to obtain from 
Equations (1.6) to (1.8) a single relation connecting current density 
with the other parameters in the problem only under sufficiently special 
assumptions, for example if the condition vi << u holds. 

Because the pressure is proportional to the product of the mass of 
the particles and the mean square random speed, under conditions (2.1) 
the terms 
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$ (Vi + Ye), (Vi+ Ve) C Cv + Vi + Ve), 
dvi 

dl’ 
vi V (V + Vi) 

on the left sides of Equations (1.6) and (1.7) can be neglected compared 
with the last terms on the right sides of the equations and with the 
gradients of the corresponding pressures. 

Furthermore, in view of Equation (1.8) and Formula (1.3) the follow- 
ing relation holds under the conditions mi >> me, mi = ma, n >> n’: 

dV ,,I e n 
m,n - I I- dL --- mi n -i n, 

- n’eE + grad p - T (v, x ,H) - 

- n’e (v ‘+vi) X H II I (( -ggradp,-neE-T(vfvi+v,) x H 

‘ht is, the term men dvldt in the left side of Equation (1.6) cm al so 
be neglected. Thus, under conditions (2.1), Equations (1.6) to (1.8) take 
the form 

- grad pe - ne E f $ (V + vi + v,) x H 
3 

- m,nv,t-l- 

- m,n v, + & 
i ) 

T,-’ = 0 

nlin -$ = - grad pi + ne [E + + (V + vi) x H] + nw,v,a-I- (2.2) 

W(n +n,)$ = -ggradp-nn’eE- GInv, -k n’ (V + Vi)] x H 

We introduce the terminology 

j=-neV,--n’e(v+vi), ji=neVi 

Here oe and oi are the Larmor frequencies of the electron and ion. 
Thus the quantities oer, oer ,, and air i denote the number of turns of 
the spiral trajectory that the corresponding particle executes in the 
time between two collisions with particles of the other components. 

With the notation (2.3) and under the conditions mi >> me and n >> n’i 
bations (2.2) take the form 
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- grad pe - en(E+bvxH)-+ jixII ++ jxH + 

+ + (X + x,) H (j + n’ev) - (A: - r H $1 ji = 0 (2.4) 

- gradpi + ne(E++vx 1114-i ji x H --(+H - 

CL -- %XiH)(n’ev+ j)-(iH$ +&uJ$\ji= nlni$ l--cl mi C (2.5) 

- grad p -t + j 
T)lilL ClV x H - n’eE = T II Gw 

Combining (2.4) and (2.5) and eliminating dv/dt with the aid of 
(2.6), we obtain the expression 

. (1 -u) c 

Ji = H (x, + Xi) c 
u grad p - grad (pe + pi) - (1 - CZ) n’e E + 

+?iev: ?t,+ ( 

(2.7) 

(In the sum of bations (2.4) and (2.5) it is necessary to take into 
account the term n’eE, because the terms fneE appearing in these equa- 
tions cancel in the combination.) 

Now eliminating ji from Equation (2.4,) with the aid of (2.7), we ob- 
tain a relation connecting the current density with the electromagnetic- 
field intensity and the parameters characterizing the medium and its 
motion 

- [grad pe + fi (a grad p -grad (pi + p,)l - j*e[E + +V x II) i-- 

+ [I - 2 (1 - a) @ - a -%- I”] + j x H + pa?z’eE - Xc + Xi IiIi 

- ?(p + +-- 2 .--&.y-) en’v x I-1 + [x + (1 - p) 1c, - 

--pL!3xi 
1-U TtLi 1 

: (j-t n’ev) - II :xrlx.i, 11% grad P - 

-ggrad(p,+Pi)IxH+‘~ j x II x II - (1 - a) n’eE A l-I]- 

n’ l-u =-y,-- 
r n x.5 + %i L 
a grad p - grad (p, + pi) - (1 - a) IZ’CE + 

(2.8) 

( p= “e) Xi + ji, 

Relation (2.8) may be regarded as the generalized form of Ohm’s law 
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for a partially ionized gas. 

If the speed of random motion is large compared with the relative 
speeds of motion of the components, the time between collisions is de- 
termined by the random speeds (u,,, uir). In equilibrium the electrons 
and ions possess equal kinetic energies of random motion, but the mean 
free path of the ion between its collisions with neutral atoms (Zia) is 
less than the mean free path of the electron between its collisions with 
neutral atoms (lea), so that 

In view of the condition mi >> me it follows that 

% OiTi Ill p 5i -=-z-- 

xi %T, mi T, 
(1.9) 

That is, between two collisions with neutral atoms the electrons execute 
significantly more turns of the spiral trajectory than do the ions. Here 
p << 1 and relation (2.8) simplifies to 

--Gila grad P - grad (p, + PJI Y H + C&AjxH,:If.L 

+ (1 - a) p,,E x H} = - 5% (1 - a)[agrad p -grad (pe + p,) -; 

+ (1 - a) p,E -I- IS j x H] (2.10) 

On the right side of EQuation (2.10) some small terms have been de- 
leted by virtue of mi >> me, n >> n’ and (2.9). 

Terms appearing in the right side of Equation (2.10) can, by virtue 
of n >> n’; be neglected compared with corresponding terms on the left 
side of this equation if the condition is satisfied 

The time r between collisions of an electron with neutral atoms is 
larger than tie time T between collisions of the electron with ions, 
thanks to the remote collisions between charged particles (see [4 I, for 
example). For gases that are not highly rarefied at moderate temperature, 
the relation (2.11) holds, and the generalized Ohm's law has the form 

-gradp,-ne!E+~vxIi!$fjxH+~~~(j - pcv) - 
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(1 - a)z -- 
fIXi i 

-&gradpxH+$ j x II x Ii + peE x 11 = 0 
I 

(2.12) 

In order to simplify the subsequent equations, the first term of the 
last item is transformed for the cases R = const, na = const. 

If the gas is completely ionized (a = 1)) K~ = K i = 0. Furthermore, 
it follows from (1.5) that j i = (me/mi)j, that is, as a + 1, the quanti- 
ties K~, K~, and (1 - a)2/Ki tend to zero, and Ohm’s law takes the form 

- grad pe - ne(E + $v x H) + f j x H -I- % H (j - p,v) = 0 (2.13) 

Henceforth the inequality (2.11) is always assumed to be satisfied. 
If this inequality is violated in a concrete case, it is necessary to 
take into account in Ohm’s law terms in the right side of (2.10). 

3. Different forms of the generalized Ohm’s law. The magni- 
tudes of the coefficients in Equation (2.12) depend on the physical pro- 
perties of the medium under consideration. Furthermore, the magnitudes 
of the individual terms in this equation depend upon the mechanical 
characteristics (velocity, pressure, etc.) of the problem under considera- 
tion and the magnitude of the electromagnetic-field intensity. In this 
connection, it can be shown in one or another specific problem that 
certain terms in Equation (2.12) are negligibly small. Thus it is 
possible to use a simpler form of the generalized Ohm’s law. In order to 
ascertain which parameters determine the form of the generalized Ohm’s 
law, we estimate the relative magnitudes of the terms appearing in Equa- 
tion (2.12). 

We observe first of all that if the gas is partially ionized, and 

then 

(1 - a)2 

Xiii I[ 
-a~gradp+fjxHxH+p,ExH]I~ 

< I- grad pe f -&j x II - enE / 
(3.2) 

and, consequently, Ohm’s law for a partially ionized gas under condition 
(3.1) coincides with Ohm’s law for a completely ionized gas (2.13) to 
within the coefficient of the current density. 

If the electromagnetic field has a significant effect on the motion 
of the medium (such problems are known to be of interest from the point 
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of view of magnetohydrodynamics and its applications), the electro- 
magnetic forces are of the order of magnitude of the inertia forces 

pu2 z (n + n,) lTl.iU’ = $ ?2?niU2 &jHL,--2-p (3.3) 

where L and Cl are a characteristic length and speed in the problem. (It 
is assumed that convective currents and displacement currents do not ex- 
ceed in order of magnitude the conductive currents.) 

Relation (3.3) shows that for any degree of ionization 

i grad pe I 6 : I j x 11 I (3.4) 

so that grad p, is insignificant for small degrees of ionization. 

If  the velocity of the electron gas relative to the ion gas is much 
smaller than the characteristic speed of the problem 

u > ve (3.5) 
then the following relation holds: 

iljxH\<ylvxH\ (3.6) 

Relation (3.5) may be given a very suggestive form using Equation 

(3.3), namely 

or 
(3.7) 

We call Cl the characteristic frequency of the problem. Thus condition 
(3.4) is equivalent to the assumption that the Larmor frequency of the 
ion is larger than the characteristic frequency of the problem. 

If the following inequality holds: 

then 
(3.8) 

(3.9) 

With the use of the inequalities (3.1) and (3.7) Ohm’s law assumes 
the form (0.2), usually used in magnetohydrodynamics: 

j=o E+~vxH)+p~v, ( 
net 

Q = N (x + x,) 
(3.10) 
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If we determine the time between collisions of the electron (with 
ions or neutral atoms) according to the formula 

(the collision frequency is equal to the sum of the collision frequencies 
of the different families), then we obtain for the conductivity the 
equation 

ae%* c,z ~ 
,)I p 

agreeing in form with the equation for conductivity of a completely 
ionized gas. 

If in addition to the inequalities (3.1) and (3.7) the inequality 
(3.8) holds, Ohm's law reduces to the relation 

E=-+VH (3.12) 

This relation is used in the study of the motion of an infinitely con- 
ducting medium. Here relation (3.3) permits the inequality U >> ue to be 
introduced in the form given in [8 1 : 

(3.13) 

Under these conditions the inequality (3.1) may be introduced in the 
form 

(I -a)” 2 (1 - Ct)‘tieH 
52 

ltin (1 - a)4 t.2e2CPn 
-~ - 

%i ,,liC v- a *-a (3.14) 

We emphasize that the inequalities (3.13) and (3.14) can be used in 
place of (3.1) and (3.7) only in consideration of a highly conducting 
medium, for which the relation (3.8) holds. 

'Ihe relative magnitude of the terms 

+jxH, x -t- x, 
7 H (j - P,V) 

is determined by the number oer*. If 

O,T' <I 

then the following relation holds: 

I j x H I < (x, + x) H 1 j - P,V 1 

(3.15) 

(3.16) 

Finally, if the inequality 
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(3.17) 

is satisfied, the following relation holds: 
(3.18) 

- l*z grad p x H + + j x II s II] I< I- grad pe - - “,” v x H 

925 

‘Ihus the relative magnitudes of the terms in Equation (2.12) that de- 
termine the generalized Ohm’s law depend on the magnitudes of the follow- 
ing dimensionless parameters: 

I Q 
wet*, --, 

(I - 1)E 2(1-2)Tj 1 Q 

U Oi Xi ’ rT ’ ; G (%V (3.19) 

related to the physical properties of the medium as well as the condi- 
tions of the problem under consideration. 

The parameter oer *, characterizing the spiral path of the electron 
between two collisions, determines the relative magnitude of (oer*/H) 
j x H and j. For atmospheric pressures, temperatures of the order of 
10,OOO” K, and moderate magnetic fields (of the order of 10,000 gauss), 
this parameter is small, and the term (ocr */H)j x H can be neglected. 
However, at these same temperatures and fields, but with pressures of 
the order of 0.01 atmospheres, the magnitude of oer* is of the order of 
unity, and the term (oer */H)j x H is significant [ 9 1 . Here the phe- 
nomenon of nanisotropic conductivityn of the gas appears. 

The parameter a-la/tii determines the relative magnitudes of the 
terms (o r */ff)j 

e4 
x H and (o/c)v x 8. For a heavy gas (argon, air, etc. ) 

at H = 10 gauss, the Larmor frequency of the ion is of the order of 
106 set - ‘, so that for a flow with characteristic speed II = 10’ cm/set 
with characteristic dimension L = 10 cm, the quantity Q/oi = 10S2. Con- 
sequently, for “pure” gas with thermal ionization the parameter s-‘fl/o i 
is large at temperatures below 10,OOO” K in a broad range of pressures, 
that is the term (a,r*/H)j x H is considerably larger than (o/c)v x H. 
If under the same conditions the ionization of the gas is increased with 
a slight amount of ionizing additive, the term (o,r*/H)j x H is in- 
significant. At very high temperatures this same phenomenon occurs also 
for “pure. gas. 

The parameter (1 - a)2/~i, determining the relative magnitudes of 
the terms (o/ */H)j x H and c -‘j x H x H, can be equal to unity only 
for rarefied gases moving in strong magnetic fields (when not only the 
electrons but also the ions possess spiral paths). For moderate fields 
and temperatures this parameter is always much smaller than unity for 
dense media. 
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‘lbe parameter [ 2(1 - a)/~. 1 r i/T, d e ermining t 
of (o/c)v x E and c-1 

the relative mapitudes 
j x R x A, can, in view of condition (2.11, be 

equal to unity only for very low degrees of ionization of the gas. 

lbe parameter U -’ (fi / Oi) (06 *)-I, being the product of two of the 

parameters considered above, determines the relative magnitudes of the 
terms (o/c)v x B and j. 

We consider the motion of a dense gas with a moderate magnetic field 
in the case when the electrons and consequently, in view of (2.10) and 
(2.11)) also the ions do not possess spiral paths 

The inequalities (3. 1) and (3.15) hold under these conditions. If  the 
degree of ionization is also significant, that is, (3.7) holds, then 
(3.17) is satisfied automatically, and Ohm’s law takes the form (3.12) 
with the realization of the inequality 

u-1 ( Q /aI i) -=zg alet* (3.20) 

(This is the inequality (3.8), transformed by means of (3.11) and Equa- 
tion (3.10), if the relation o-l (~/oi) = OJ l holds. This form of Ohm’s 
law is used in magnetohydrodynamics and is considered above.) If the 
degree of ionization is also small, so that 

then the inequality inverse to (3.20) holds, and Ohm’s law takes the form 

j=cE (3.21) 

which coincides in form with Ohm’s law for a stationary conductor. For 
low degrees of ionization the induced currents are small, hut the 
currents flowing in the gas must he appreciable if the electromagnetic 
field affects the motion of the gas, that is, relation (3.3) is satisfied; 
then naturally currents in the gas can thereby be created only on account 
of the external electric field. It is evident that under these conditions 
Ohm’s law has the form (3.21). The inequality (3.7) can he violated on 
account of the reduction of the magnetic field. In a weak magnetic field 
Ohm’s law also has the form (3.21). In this case, if the external 
electric field is weak, Ohm’s law has the form (3.21), but relation (3.3) 
is violated and the electromagnetic field then does not affect the motion 
of the medium. 

Let the conditions of the problem be such that 0~7 l - 1. Then in view 
of (2.13) and (2.11) Ki >> 1. that is, the inequality (3.1) holds. Under 



these conditions, if the inequality (3.7) holds, Ohm’s law has the form 
(3.13). If the relation a-’ (Eli) = 1 holds, then Ohm’s law takes the 
form 

(3.22) 

This form of Ohm’s law has been used in a number of papers for the 
study of the flow of a conducting gas with anisotropic conductivity. 
Finally, if the inequality inverse to (3.7) holds, Ohm’s law has the form 

H-k&gradpe for IEl~$+lvxH/ (3.23) 

j=aE- “$* --jXH+-&-gradp, for/El>$lvxHI (3.24) 

If the conditions of the problem are such that oer l >> 1, but the 
ions still do not possess spiral paths (Ki > l), or the degree of ioniza- 
tion is sufficiently high that the inequality (3.1) is satisfied, then 
analogous to the preceding case we obtain the following form of Ohm’s 
law: 

Finally, we consider the case when the conditions of the problem are 
such that the electrons as well as the ions possess spiral paths, and 
the degree of ionization is so slight that the inequality (3.7) is 
violated. In this case Ohm’s law has the form 

for (1--a)2 1, .LLL-1 
%i aoi 

ne E+-:vxH 
i 

+$jxH--G$gradp,-- 

-a%gradpxB+kjxHxH =O (3.26) 
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if IE I -1 
ICC Ivx n 1 ; if this relation is not satisfied the term oE is 

added to (3.27). I f  

(1 -y + l 

I 

then Ohm’s law has the following forms: 

2 (1 - a) ti for +$-=gl, aT z-1 
* 

- E+$~~II~--~(--~B~.~~P+~~XHXH)-O (3.28) 
1 

2(1 -a)zi 
for $:<I, aT 

i 
31, [El< +H’ 

I I 

a 1 -- 
,1 - a 

grad p + c j x H x H + p,E X H = 0 
(3.“9) 

For a -h-l/oi 3 1 Ohm’s law has the form (3.29). 

v/e note in conclusion that in carrying out the estimates the charac- 

teristic quantities L, II, T were everywhere assumed to be equal for all 
mechanical and electromagnetic variables. These estimates are therefore 
inapplicable to flows with various kinds-of boundary and transition 

layers, and to other problems in which the characteristic magnitudes of 
various variables may be different. In these problems (as in establishing 
any problem) it is necessary to carry out estimates analogous to the pre- 
ceding ones in order to choose a form of Ohm’s law. Furthermore, in all 
the estimates it was essential to use the assumption that the electro- 
magnetic field significantly affects the motion of the medium, that is, 
relation (3.3) holds, which determines the form of one of the basic para- 
meters a -l i-&Q. I f  the conditions of the problem are such that relation 
(3.3) is violated (motion of a weakly conducting medium at high speed or 
slow motion of a highly conducting medium), it is necessary in the esti- 

mates to use the inequality II >> ve directly, and not (3.7), which is a 
consequence of II >> ve only under the conditions (3.3). 
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